The Infection of Cucumber (Cucumis sativus L.) Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF) Genes, Particularly in Association with Giant Cell Formation
نویسندگان
چکیده
Cucumber (Cucumis sativus L.) is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita). However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D) reduced root-knot nematode (RKN) parasitism. It is known that Actin-Depolymerizing Factor (ADF) affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF) genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I), and CsADF6 (Subclass III) have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes), and CsADF5 (Subclass IV) in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2, and CsADF2-3), with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI) with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2) showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III) showed a specific induction at 21 DAI, while CsADF5 (Subclass IV) was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately 2-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection.
منابع مشابه
Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis.
Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that develop upon nematode infection and that knockdown of a specific ADF isotype inhibits nematode prolife...
متن کاملScreening and identification of cucumber germplasm and rootstock resistance against the root-knot nematode (Meloidogyne incognita).
Root-knot nematodes (Meloidogyne spp) are destructive agricultural pests that reduce the productivity of cultivated vegetables worldwide, especially when vegetables are cropped continuously in greenhouses. Cucumbers (Cucumis sativus L.), in particular, suffer extensive damage due to root-knot nematodes, and only a few wild species are known to be resistant. Grafting of cultivated plants to root...
متن کاملLong-Term In Vitro System for Maintenance and Amplification of Root-Knot Nematodes in Cucumis sativus Roots
Root-knot nematodes (RKN) are polyphagous plant-parasitic roundworms that produce large crop losses, representing a relevant agricultural pest worldwide. After infection, they induce swollen root structures called galls containing giant cells (GCs) indispensable for nematode development. Among efficient control methods are biotechnology-based strategies that require a deep knowledge of underlyi...
متن کاملEffects of Tagetes patula on Active and Inactive Stages of Root-Knot Nematodes.
Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned i...
متن کاملIsolation and Callus Production from Cotyledon Protoplasts of Cucumis metuliferus
In North Carolina, approximately 8% of the cucumber (Cucumis sativus) yield is lost to root-knot nematodes (Meloidogyne spp.) (Main and Gurtz, 1989). No resistance was found in cucumber after screening of 900 cultigens for resistance to Meloidogyne incognita race 3 (Walters, 1991). African horned cucumber (Cucumis metuliferus) has resistance to M. incognita (Fassuliotis, 1967; Walters, 1991), a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016